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ABSTRACT

A small, low-density, hypervelocity, continuous
wind tunnel operating at total temperatures from 2000
to 4000 °K is described, and initial experiments designed
to determine the characteristics of the flow are discussed.
Effects of low Reynolds numbers on impact-pressure probes
and static-pressure probes are shown. Preliminary work
with a probe for measuring local mass-flow rate is out-
lined, and results are shown to be in agreement with impact
and static pressure measurements. Axial and transverse
surveys of flow in the nozzle are presented to illustrate the
extent of boundary-layer growth and the useable core of
flow. A diffuser is proved to be advantageous, even though
very low Reynolds numbers are typical of the tunnel. A
comparison of data on drag of spheres, including measure-
ments from the new wind tunnel, is presented.
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NOMENCLATURE

Cross-sectional area or reference area

Drag coefficient

Force coefficient, either lift or drag

Reference diameter, usually maximum

Orifice or inside diameter

Height of manometer or gage fluid column

Mach number

Mass-flow rate

Pressure

Dynamic pressure, pUZ2/2

Gas constant

Body or nose radius

Molecular speed ratio

Temperature

Time

Velocity

Volume

Axial station in nozzle, zero at exit, positive downstream
Axial length along probe, zero at stagnation point
Radial station in nozzle, zero on centerline, positive downward
Z = p/pRT

Ratio of specific heats

Pal P2

Denotes microns or 0.001 mm

Kinematic viscosity

Density

Shock wave angle measured from free-stream direction
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SUBSCRIPTS

a Dimensions of probe orifice

c . Near inviscid, high Reynolds number condition

fm Free-molecular flow condition

i Probe or tube inside diameter

o Stagnation conditions (total or reservoir). When used in com-

bination with a prime - i. e., po', conditions at the stagnation
point on a body are referred to.

P Conditions at inlet to mass-flow probe

Free-stream conditions

1 Local value of a quantity

2 Conditions immediately downstream of a normal shock wave
t Conditions in tank surrounding tunnel nozzle and jet

v Conditions inside mass-flow collecting tank

w Body surface or wall condition

X Based on the distance x

L
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INTRODUCTION

The need for studying gas dynamic problems created by flight at
extreme altitudes has led to consideration of experimental facilities
capable of simulating the essential flow conditions. Some of the pre-
liminary design considerations pertaining to a small, prototype facility
for exploring problems in the simulation of flight at extreme altitudes
by wind tunnel techniques are discussed. Following this, the tunnel is
described, and results of several early calibration tests are presented.

The process leading to construction of the prototype facility de-
scribed herein included study of the flight regimes of various types of
vehicles to determine what characteristics should be possessed by the
laboratory simulator. This approach may quickly lead to impossible
goals if duplication of all free-flight conditions is considered, andrather
drastic compromises often are imposed by practical considerations.
Many of the relevant scaling laws which could be helpful in such studies
cannot be evaluated comnpletely until more experimental data are avail-
able. Therefore, any analysis, however elaborate, is likely to be incon-
clusive if its goal is the definition of a single, self-sufficient type of
facility for investigation of low-density aerodynamics. Consistent with
this view, the brief remarks in following sections dealing with various
features of the tunnel are not intended to imply that all the relevant gas
dynamic parameters are simulated, nor is there any attempt to prove
that the compromises are necessarily optimum. However, preliminary
experimental results, which are shown, indicate that this type of facility
is capable of producing an environment having great utility for gas dy-
namic studies.

GENERAL DISCUSSION

SIMULATION

Although the subject will not be treated at length, it is appropriate
to include a brief review of the flight simulation desired of the new
facility and some of the compromises accepted. Several recent books
and papers have defined the regimes of low-density flow in relation to
hypervelocity flight (c. f. Refs. 1-5). '

Manuscript released for printing August 1961.
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Studies of flight in planetary atmospheres at high altitudes have dis-
closed that many of the most significant low-density aerodynamic phe-
_-nomena occur in continuum fluid flow regimes. For example, Fig. 1
shows that important aerodynamic forces may be generated under con-
ditions where decidedly complicated low-density phenomena occur, but
that truly non-continuum flow is experienced mainly at orbital altitudes.
The regimes of rarefied gas flow in Fig. 1 are defined for the stagnation
region of a blunt body and follow Probstein (Ref. 5). The boundaries
1 < B £ 1000 encompass payloads being lowered by drag brakes and hyper-
sonic gliders; contemporary missile warheads are somewhat above the
upper bound.

Considerations of factors such as those presented in Fig. 1 led to
the conclusion that flight at altitudes above 40 miles deserved special
study because of pronounced low-density effects which are or will be
encountered by re-entering bodies, hypersonic gliders, and future ''space'
planes” which may spend nearly 100 percent of their flight time above
that altitude. Although velocities of 25, 000 to 250, 000 fps are of interest
for interplanetary flight, no effort was made to produce such velocities.
The reason is fairly obvious when the stagnation conditions corresponding
to very high velocities are reviewed. Duplication of velocities encoun-
tered in space flight is not feasible by conventional wind-tunnel methods
because of the extremely high stagnation enthalpies required. The related
problem of producing and containing fluid at the necessary enthalpy levels
is better appreciated when pressures and temperatures are considered.
Figure 2 shows the isentropic stagnation conditions corresponding to the
lower range of velocities. Practical difficulties facing the extension of
conventional wind-tunnel methods of heating and then expanding gas to
simulate the very high velocity conditions are evident in Fig. 2. First
and foremost, the facility discussed herein was intended for low-density
investigations with high speed but not necessarily the whole range of
free-flight velocity duplicated.

Inasmuch as models tested in the prototype tunnel are small, Knudsen
and Reynolds numbers are at least one order of magnitude different from
full-scale vehicles in free flight at the same density. Because of the
model's small size, in a low-density tunnel or firing range it is the same
as a full-scale vehicle flying at much greater altitudes when Knudsen and
Reynolds numbers are involved. Even though small model size does
vield this compensation, caution must be exercised in exploiting the ad-
vantages of small models in low-density experiments because absolute
scale may sometimes be a factor, for example, when reaction rates are
slow.

The general velocity and density altitude regime of interest has been
identified, and attention now will be turned to other factors which played
a part in design of the facility.

10




AEDC-TN-61-83

SOME SIMULATION PARAMETERS

As a preliminary step in the design of the wind tunnel, consideration
was given to the recognized simulation parameters associated with low-
density flow. The object of this was, of course, to decide what char-
acteristics the facility must possess to enable useful data to be gained.
Stated another way, what must be duplicated, what can be simulated, and
how serious is failure to satisfy fully some of the requirements ? Since
this report is written after the fact - i. e., the tunnel is already built -
only the more significant decisions will be reviewed.

Mach Number and Velocity

Although it was deemed necessary that the flow be hypersonic, the
question of velocity also arose. Obviously, hypersonic flow, requiring
only stagnation temperature high enough to avoid liquefaction after expan-
sion, meets some of the requirements and is easier to create in a wind
tunnel. However, there.are several points favoring high temperature or
hypervelocity capability.

The great importance of wall heat transfer on such things as viscous
interaction, and therefore the lift and drag of a large class of aerody-
namic bodies, helped decide the issue in favor of high velocity and high
temperature. This decision is supported by data such as those in Ref. 6
which compares aerodynamic forces and moments on wedges in low-
density flow and demonstrates that the heat transfer condition is very
important in determining aerodynamic forces. Obviously, approximation
to free-flight boundary-layer conditions is closer if stagnation tempera-
ture is appreciably greater than wall temperature. Realization of this
state of affairs can be aided by forced cooling of the model, as by circu-
lating coolant internally, but this approach has obvious disadvantages for
everyday testing. Also, the range of temperatures existing in the flow
field around a model then would not be representative of free-flight. In
that case, the changes in certain fluid characteristics occurring, for
example, as a regult of passage through a shock wave, would be different
from free-flight (c. f. Ref. 7).

Further guidance favoring the choice of hypervelocity over merely
hypersonic flow for low-density tunnels was found in the Mach number
independence principle. As stated in the recent book by Hayes and Prob-
stein (Ref. 4), that principle holds for the case of the strong shock, or

(Mo sin a>-2 << ¢4, and may be given as follows:

"

a flow solution obtained for one sufficiently large vaitue
of M_, will serve for another large value of M, if p, and U,
are the same." ‘

11
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Duplication of p, being an objective at the onset, this would indicate the
desirability of high U,_.

The ability to create and vary real fluid effects produced by high
temperature appeared desirable because these effects were thought likely
to require much study. This, then, was another point in favor of elevated
temperature capability. Rather than study low-density and temperature
sensitive phenomena separately in different facilities, a study of low-
density alone or combined low-density and high temperature in a single
facility seemed desirable. '

Finally, the possibility of using the facility for nearly free-molecular
flow experiments with very small, simple models was not overlooked. A
need for such data obtained from high-speed flow exists, and it seemed
probable that a hypervelocity facility could make useful contributions.

These are some of the reasons which led to the conclusion that not
only hypersonic but also hypervelocity performance should be sought.
This conclusion implies high stagnation enthalpy, and in a wind tunnel it
also means supplying gas to the nozzle at high enthalpy. The associated
problems are well known. Figure 3 shows a simple pressure-temperature
relation summarizing the throat heat transfer situation. To the left on the
figure, continuous operation of a wind tunnel is possible, but on the right
only very brief run times are allowable. A boundary curve of constant
throat heat flux has been drawn through a point representative of an ad-
vanced, continuous, hypersonic tunnel using indirect, water cooling.
Thus, more elaborate cooling system design could be expected to move
the curve to the right. A highly approximate indication of this is given
by the line labeled future development which refers to a method of cooling
by injecting a suitable fluid, e. g., helium, just upstream of the nozzle
throat so that a blanket of cooling fluid forms a sub-layer along the noz-
zle surface. Application of this method may introduce serious flow ab-
normalities, however, and must be investigated more fully. Since
structural problems of containing high pressure gas at high temperature
have not been considered in drawing Fig. 3, some compromises might
be necessary in specific applications. Although the pilot LDH Tunnel
operates well to the left of the boundary in Fig. 3, these considerations
and others briefly discussed later are presented because of thetr rele-
vance to the future development of similar wind tunnels.

Knudsen and Reynolds Numbers

There was no need to make a decision as there was for the question
of low or high velocity. It suffices to say that desired values of these
parameters were those which would enable tests right in the middle of
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the transition from continuum and essentially inviscid flow to free-
molecular flow. Furthermore, it was believed preferable to achieve

a condition of heat transfer to the models which would create relations
between free stream and model wall temperatures similar to those
applying in free-flight cases. Thus, the relations between free-stream
and so-called ''wall" values of Knudsen and Reynolds numbers also would
be similar. The latter requirement contributed to the decision to design
for high stagnation temperatures.

Thermodynamic Equilibrium

This subject must be regarded as part of a discussion of simulation
when low-density, hypervelocity conditions are assumed. Unfortunately,
the maintenance of thermal equilibrium is not always compatible with
practical attainment of the flow conditions desired for investigation of
other phenomena. For the flow to be in thermodynamic equilibrium as
the fluid flows through a hypersonic nozzle, rapid adjustment in chemical
composition and energy levels of vibrational, rotational, and translational
degrees of freedom is required. Even though the different intervals of
time characterizing the various reactions in the gas are extremely small
by normal standards, high speeds and low densities may not give the time
needed for the gas to adjust to rapidly changing conditions. In such cases,
there is departure from equilibrium, and calculation of many fluid dy-
namic quantities is made difficult. Situations are known to arise where
the adjustment lags to such an extent that the fluid may be considered
effectively "frozen' insofar as its thermodynamic adjustments are con-
cerned. In that case, a certain simplification in calculations results
since the gas may be treated as a perfect gas with the ratio of specific
heats determined by the particular condition of freezing. Thus, it often
is possible to calculate the limiting conditions corresponding to equilib-
rium on the one hand and complete freezing of certain reactions on the
other.

Theoretical effects of dissociated, non-equilibrium flow in wind-
tunnel nozzles have been presented in various papers (c. f. Refs. 8-9).
Similar effects pertaining to flow over aerodynamic bodies have been cal-
culated (c. f. Refs. 10-11). Experimental results from measurements
in a shock tunnel may be found in Ref. 12, and another example of a quan-
titative experiment on chemical non-equilibrium is discussed in Ref. 13.
Other references may be found in the cited papers.

Effects of vibrational non-equilibrium, which may be encountered

under less extreme conditions than dissociation, have been discussed in
Refs. 14-18 and others.

13
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Several monatomic gases are useful as working media in plasma
heated tunnels. The main concern regarding thermoedynamic equilibrium
in such cases is directed to ionic recombination. Recent discussions of
this subject are given in Refs. 19 and 20.

At the beginning of the work being described, there appeared to be
good reasons to expect some degree of thermodynamic non-equilibrium,
particularly when operating at the higher stagnation temperatures. The
length and time available for readjustment of thermodynamic state before
a particular station is reached by a molecule passing over a model is
determined by model size if all the flow parameters are fixed. This im-
plies that, all else being equal, no complete simulation of full-scale,
free-flight exists short of complete duplication insofar as non-equilibrium
thermodynamic processes are concerned. One may find slight comfort
in remembering that complete simulation of full-scale, free-flight con-
ditions rarely has been achieved in any aerodynamics laboratory in the
past. But it does seem that the ability of the aerodynamicist to discover
and distinguish between separate factors in his experiments receives its
sternest test when low-density, hypervelocity laboratory experiments
are undertaken.

The advent of significant thermodynamic non-equilibrium effects in
aerodynamics laboratory work in the writers' opinion simply meant that
it would require study by all means available. In the present case, it
meant that one would have to consider the possibility and the effects of
non-equilibrium in all experiments. This is equally true of free-flight
testing, since all the non-equilibrium phenomena, including frozen flow,
may occur there, '

While on this subject it is worth remarking that very high Mach num-+
bers (30-60) appear to be attainable by '"frozen' expansions in plasma
heated tunnels. However, one should not overlook the limit on attainable
Mach number imposed by liquefaction or solidification of the gas medium.
Figure 4 shows stagnation temperature required to keep test section tem-
perature equal to 50°K, and Fig. 5 shows stagnation pressure required to
keep test section pressure equal to one micron Hg. Air at one micronHg
solidifies at 35°K. Thus, the enchantingly high Mach numbers are not so
easily reached using nitrogen or nitrogen-oxygen mixtures. However, if
one uses gases with extremely low freezing points, such as helium, un-
usually high Mach numbers indeed appear attainable.

TYPE OF FACILITY
Various alternate paths of investigation may be followed in the devel-

opment of a low-density facility. First, a shock-tunnel or "hotshot' tunnel

14
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could be considered. Pumping rate of the vacuum pumps is not of major
importance for such tunnels, and the short run times permit high reser-
voir pressures which enable expansions to high Mach numbers and very
low pressures. Second, a ballistic range could also be considered. That
type of facility appears to be the only one capable of simultaneous dupli-
cation of all hypervelocity stagnation conditions in air at fully defined
ambient conditions. Third, a continuous, arc-heated wind tunnel limited
to lower stagnation pressure than an intermittent tunnel by pumping rate
- and nozzle throat heat transfer limits also appeared to be worthy of study.
Brief reviews of laboratory facilities of these types may be found in the
literature (c. f. Refs. 21-23).

There are advantages associated with all classes of aerodynamic
facilities listed above. It will only be stated that the continuous, arc-
heated tunnel was chosen for further investigation because of its suita-
bility for detailed, accurate experiments. This decision was reached
with the benefit of the knowledge that both hotshot tunnels and hyperbal-
listic ranges are in development at the von Karman Gas Dynamics Facility
(VKF). Therefore, mutually advantageous interchange of test data is
facilitated, and the individual types of equipment complement each other.
In this case, the unfavorable features of a continuous tunnel, such as
lower stagnation pressures and therefore greater susceptibility to ther-
modynamaically frozen flow, may be balanced against the availability of
supplemental data from associated facilities, and the well known advan-
tages of continuous operation may be exploited.

DESIGN CONSIDERATIONS AND DESCRIPTION

A general view of the tunnel is presented in Fig. 6., Limited space
prevented a more inclusive view, so such components as the power sup-
ply, gas storage, ejectors, cooling-water heat exchanger, and similar
important accessories are not visible. These are indicated in the eleva-
tion view sketched in a highly simplified way in Fig., 7.

Usual operating conditions with the original nozzle fall within the
indicated ranges when computed for flow in thermal equilibrium. These
results are based on flow calibrations to be described later. The ranges
are presented on the following page. ’

15
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Gas ------ Ng (other gases may be used)
Total temperature ------ 2000 - 4000°K (3600-7200°R)
Total pressure ------ 12 - 18 psia
Mach number ------ 9 -11.4
Velocity --==--~ 7000 - 10, 000 fps
) Dynamic pressure ------ 2 - 4 psf
Unit Reynolds number ------ 220 - 420 per in.
Density ------ (2 to 4) x 1078 1b/cu ft
Mean free path ------ approximately 1/10 in.
Equivalent density altitude ------ approximately 50 mi.
HEATER

A decision was made to use the heating scheme offering the highest
temperatures and flexibility, yet not so advanced that a great deal of
developmental research would be needed. The plasma generator or
continuous arc-heater appeared to meet these specifications. Compre-
hensive, up-to-date reviews of plasma generators may be found in
Refs. 24-25. A commercial unit was bought to avoid delay and the
results of inexperience in plasma generator design.

A misconception appears to exist concerning Mach numbers to which
a plasma-heated tunnel is limited by throat heating and arc chamber pres-
sures. It has been said that Mach numbers of 7 or 8 represent the upper
limit; however, the VKF prototype tunnel now operates at Mach num-
bers of 9to 11.4, and this limit is imposed mainly by pumping capacity.
An estimate indicates that methods well within present technology would
enable Mach numbers over 20 to be reached in a continuous tunnel. Pump-
ing capacity, nozzle boundary-layer growth, and gas liquefaction caused
by low temperatures in the test section apparently represent the major
limits on Mach number of plasma heated, continuous wind tunnels. On
the other hand, stagnation pressures and temperatures certainly are
limited by nozzle-throat heat transfer and arc-chamber strength. Heat
losses arising from high arc-chamber pressures result in loss of effi-
ciency, and the increased power required is another practical obstacle
to attainment of high temperatures at high stagnation pressure.

The plasma generator used with the tunnel is a conventional, older,
direct current design having a water-cooled, thoriated tungsten cathode

°
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and water-cooled, copper anode. The gas to be heated flows axisym-
metrically over the cathode and is constricted as it passes through the
arc column and the combination nozzle and anode. Although it is nomi-
nally a 40-kw unit, the present tunnel consumes less than 20 kw under
normal conditions. In its present form the plasma generator is reliable,
and contamination of test section flow by electrode material has not been
a problem with the nitrogen normally used as a test medium. Under
normal operating conditions the plasma generator efficiency, line-to-gas,
is approximately 0 to 65 percent,

One problem arising from the heating process is caused by the
extremely high temperatures created in the gas issuing from the arc B
(= 10,000 - 50, 000 °K). This raises questions concerning thermal equi-
librium, reaction rates, the mechanisms of energy transfer, and even
the definition of temperature (see e. g., Ref. 26), When the arc-heated
gas discharges at pressures of an atmosphere or higher, local thermal
equilibrium generally is assumed on the basis of spectroscopic meas-
urements made at other laboratories.

SETTLING SECTION

The VKF low-density, hypervelocity (LDH) tunnel design incorpo-
rates a rather generously large settling chamber between the plasma
generator and the entrance of the wind tunnel nozzle. This is intended
to damp flow unsteadiness, encourage mixing, and promote thermody-
namic equilibrium. Dimensions of this section are shown in Fig. 8.

This originally was considered a temporary design, but it has been satis-
factory and remains in use.

Naturally, a penalty in efficiency was expected because of heat loss
from the gas in the settling chamber. For a typical case about 20 per-
cent of the total input power or 30 percent of the power delivered to the
settling chamber is lost there. The initial goal was merely to extend
test capabilities into, first, low-density and, second, moderately high
velocity conditions. The low weight-rate-of-flow made heating efficiency
less critical. Planning of larger facilities obviously would be more
affected by considerations of efficiency.

Temperature and impact-pressure surveys have been made inside
the settling chamber with both heated and unheated flows. In the former
case, the surveys could not be extended to the centerline because the

probes could not withstand the great heat. Based on these tests, it ap-
pears that a pressure orifice in the settling chamber wall is satisfactory
for measuring total pressure. Total temperature is determined by

17
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measuring gas flow rate and pressure in the settling section. When the
geometric area of the sonic section of the wind tunnel nozzle is known
and when thermodynamic equilibrium is assumed, a temperature may
be calculated using the continuity equation and the Mollier diagram for
the gas. If it is assumed that the vibrational degrees of freedom of a
diatomic gas, say N9, are completely frozen in the settling section, a
temperature roughly ten percent greater will be calculated when equilib-
rium T, = 3020°K and py = 17. 8 psia. When the calculated temperature
for nitrogen is no greater than 3600°K dissociation is assumed to be
negligible in the settling section where pressures are around one atmos-
phere. Most of the operations to date have been intentionally confined
to undissociated flows. All total temperatures quoted herein are based
on thermal equilibrium, measured total pressure and mass-flow rate,
and known nozzle sonic throat area. Shift of the sonic station away from
the section of minimum area because of heat transfer and skin friction
has been calculated and found to be negligible.

Fluid from the arc heater, that is, the plasma, is electrically con-
ductive. Conductivity of the fluid in the settling section has been meas-
ured and found to vanish upstream of the entrance to the nozzle.

A smaller settling chamber volume possibly would be satisfactory,
particularly if the plasma generator were replaced with a design pro-
viding improved mixing in the plasma during the initial heating process
in the arc chamber. Smaller wetted area would reduce heat loss from
the contained gas.

NOZZLE

Design of the first nozzle for this wind tunnel was based on less
secure grounds than present-day design of nozzles for more conventional
tunnels. In the first place, the very conditions intended to be produced
made the boundary-layer growth and viscous losses dominant in-deter-
mining both nozzle contour and required pressure ratio., Secondly, per=-
formance of the pumping system was based entirely on calculated jet-
ejector performance, so the relation between flow rate and tunnel "end"
pressure was not known with certainty. Finally, it was planned to operate
continuously with very high stagnation temperatures, which made design
of the nozzle cooling system important. The fact that the original nozzle
proved almost ideal attests to the good fortune attending these estimates.

Dimensions of the original nozzle are shown in Fig. 8. The conical

expansion was adopted on the basis of estimated performance of other
tunnel components and estimates of boundary-layer growth for expected.
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-

nozzle Mach and Reynolds numbers. Since these estimates indicated an
approximately conical shape, the obvious machining ease decided the
issue. Results of typical transverse impact pressure and ''relative"
total-temperature surveys in the original nozzle are shown in Fig. 9.
The so-called ''relative' total temperature was measured by a stagnation
temperature probe of the type often used in unheated, supersonic flows.
Thus, a greater part of the heat transmitted to the probe was lost through
conduction and radiation, making the thermocouple output suitable only to
indicate lateral distribution of heat flux at a given axial station in the noz-
zle. However, this information is valuable as a supplement to impact-
pressure profiles.. In this connection it is relevant to note that impact
pressures are subject to increasingly large error as Reynolds number
of the probe, U, D/v_, decreases below roughly 200. This feature under-
ines the usually high level of confidence associated with such probes.
More will be said on this topic in a later section. Aside from the effect
of low Reynolds number on impact~-pressure probes, there is the well-
known difficulty with impact-pressure probes in regions where large
lateral gradients in Mach number and other quantities exist. Such con-
ditions are typical of the edges of hypersonic boundary layers. Thus,
even a merely "'relative' total temperature may be more indicative of
flow conditions at the edge of the core of uniform flow in the nozzle.

The impact-pressure probe used in obtaining the data shown on
Figs. 9 and 10 was a water-cooled, flat-faced body of revolution having
an outside diameter of 0. 25 in. and an orifice diameter of 0. 095 in.
Profiles of both impact pressure and heat flux were found to be sym-
metrical about the nozzle axis.

Figure 9 reveals that the tremendous boundary-layer growth mate-
rialized as expected and showed that test section size of such wind tunnels
really must be quoted in terms of ''core diameter' to be meaningful. To
take full advantage of the rather marginal pumping performance, the noz-
zle is designed to overexpand. Thus, a weak, reversed, conical shock
emanates from near the exit of the nozzle. In a typical case this shock
raises static pressure from about 15 microns Hg ahead of the shock to
roughly 60 microns Hg downstream, thereby balancing pressure along
the border ‘of the hypersonic Jet between nozzle exit and diffuser entrance,
This is seen in Fig. 10 which shows three typical axial impact~=pressure
surveys. Location of the trailing shock depends on operating conditions,
such as diffuser setting and model blockage. Its pcosition is often made
visible by the increased heating and red coloration locally on a.sting or
probe extending from the test section back through the shock.

A brief experiment has been conducted to find if extending the nozzle
downstream causes a corresponding shift in shock position, To conduct
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this experiment, two nozzle extensions were made. One was a right
cylindrical tube with an inner diameter equal to nozzle exit diameter.
The other was a crudely contoured replacement of the uncooled, down-
stream part of the basic nozzle, and its smaller diameter joined the
basic nozzle at X = -5.8 in. Results shown in Fig. 11 will be helpful in
designing a contoured nozzle for the tunnel. Only slight additional ex-
pansion is possible, but the exit shock can be moved about 6 in. down-
stream by extending the nozzle. Apparently this occurs because the
higher tank pressure, p;, influences boundary-layer development several
inches upstream of the nozzle exit by transmission through the subsonic
portion of the boundary layer.

Also apparent in Fig. 10 is the absence of any axial region of con-
stant Mach number. This is not a serious matter because the Mach num-
ber gradient is not steep near the nozzle exit. However, a contoured
nozzle now is being designed by a method appropriate to the flow char-
acteristics. Studies of the calculation of nozzle boundary-layer thick-
ness, 6, for cases where 6 is of the order of nozzle radius were begun
soon after the initiation of the low-density tunnel project. The method
takes heat transfer and variable specific heats into account. The bound-
ary layer in this nozzle has a typical laminar, hypersonic profile and is:
developed in the presence of a favorable wall heat-transfer condition,
Tw/To being approximately 1/10.

The throat of the present nozzle remains relatively cool during tunnel’
operation. In a typical situation with total pressure 17.79 psia, total
temperature 3020°K, and 3.6 lb/hr nitrogen flow rate, the entire nozzle
cooling loss amounts to approximately 30 percent of the total input power
to the heater.

TEST SECTION TANK

The 4-ft-diam tank enclosing the nozzle exit and diffuser inlet regions
has no particular significance aerodynamically except that pressure in
this tank is influential in determining strength and location of the shock
wave trailing downstream from the nozzle. This pressure (p;) may be
adjusted and held constant when necessary by varying primary air pres-

" sure to one of the ejectors., Initial level of this pressure normally is

determined by diffuser inlet location axially and blockage effect of the
model or probe installed in the test section.

Size of the tank was dictated by space needed for easy installation of

traversing mechanism, model and probe supports, instrumentation, and
special experimental apparatus. Access to the interior normally is by
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removal of the entire front flange which is supported by an overhead struc-
ture permitting the flange to be pushed back and forth with little effort.
The heater, settling section, and nozzle all are mounted to this large
flange and move with it. '

Pressure transducers are mounted immediately adjacent to the nozzle
exit inside the tank whenever possible. This reduces lag-time, which
could be a serious problem in measuring pressures with long connecting
tubing. Transducers are calibrated with the instruments exposed to the
same ambient pressures and temperatures experienced during their sub-
sequent use in a test.

DIFFUSER

A diffuser is a rather unusual component for a low-density wind tun-
nel. Because of the very pronounced viscous losses corresponding to the
low Reynolds numbers throughout these tunnels, pressure recovery is
poor and usually not especially attempted. However, even a small degree
of recovery is valuable, and some effort toward that end was believed to
be worthwhile, Therefore, the tunnel was designed so that various dif-
fusers could easily be installed.

The first series of diffusers tested is described in Fig. 12. Design
was rather arbitrary because of the absence of data for the combined
low-density, hypervelocity flow conditions. As an ecoromy measure,
one entrance cone, one exit cone, and a series of central sections of
varying diameters were fabricated from sheet metal. The smaller diam-
eter central section had the greatest axial length, and each succeeding
configuration of equal minimum diameter was made by cutting off part of
the center section. FEach succeeding diffuser of larger throat diameter
was made by cutting off part of the conical sections so that their smaller
diameters matched the new central section. Thus, the effect of central
~ section length was investigated with entrance and exit section lengths
constant for any given throat diameter, but the conical pieces became
successively shorter with each increase in throat diameter,

Inasmuch as tank static pressure rather than tunnel pressure ratio
was of direct concern in the present case, results are presented in terms
of the tank pressure in Fig. 13. Examination reveals that variation of
axial length of the constant area diffuser throats had negligible effect on
tank pressure. However, diameter of this throat section is quite impor-
tant. The apparent optimum value of unity for the ratio of nozzle exit
and diffuser throat diameters probably is coincidental because much of
the nozzle exit is filled with boundary layer. Free-jet length was a
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factor in these tests, but it became less critical as the throat diameter
was enlarged. When the latter dimension exceeded the optimum, influ-
ence of free jet length became relatively unimportant.

A review of the conmtributions of various segments of the diffusers
is interesting. Figure 14 shows that a simple short-tube orifice in a
wall reduced tank pressure from 60 to 30 microns Hg. Addition of a
collector or convergent section further reduced tank pressure to 12 mi-
crons Hg. Completion of the diffuser by addition of the divergent section
did not provide much additional benefit except when greater free jet
lengths existed. It may also be noted that provision for a finite length
of constant diameter throat resulted in an improvement over the perform-
ance of a convergent cone-frustum alone.

Rise in tank pressure resulting from blockage decreased as diffuser
throat diameter increased. Figure 15 shows this for one set of operating
conditions. The small size of the tunnel makes it important to minimize
the size of supporting struts and other obstacles in the stream. The in-
fluence of tank pressure on position of the nozzle shock is indicated in
Fig. 16. Benefits of the diffuser may be appreciated when it is reaiized
that the axial spread of points in Fig. 16 covers approximately six useful
test section diameters. A more extensive investigation of diffuser per-
formance may be conducted in the future, but it is considered that the
major gain already has been realized. -

PUMPING SYSTEM

The pumping system consists 'of two stages of air injection plus the
evacuation system of the VKF intermittent tunnels. The latter is an
original part of the VKF plant, and in conjunction with a high pressure
air storage vessel, it forms the drive system for two 12 in. tunnels.
Access to the large vacuum tank and generous quantities of high pressure
air were utilized in the low-density tunnel for economy. The vacuum
tank may be evacuated to 0.04 - 0. 10 psia (2-5 mm Hg) and maintained
at that level for flow rates up to roughly 360 lb/hr. Although this capac-
ity is vastly greater than necessary for the low-density tunnel, the pres-
sures are not low enough. Therefore, two stages of a small, surplus
steam ejector were cannibalized. Air from the VKF storage tank is used
as the primary fluid for these ejectors because of its ready accessibility
as compared to the added expense of providing steam. The ejectors lower
the pressure at the tunnel to approximately 1/100 of that In the large,
spherical vacuum tank into which the tunnel discharges. This pumping
system has proved extremely satisfactory insofar as it is trouble-free
and meets originally calculated performance,
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RESULTS FROM INITIAL EXPERIMENTS

In view of the low densities, high speeds, and small size combined
in this wind tunnel nozzle, there is a strong possibility of thermal non-
equilibrium, On the basis of published reaction rates for nitrogen, both
in regard to molecular vibration (Ref. 16) and dissociation (Ref, 20), it
appears justifiable in the present case to assume equilibrium in the
settling chamber just upstream of the nozzle. Then since little or no
dissociation should exist in the nozzle under ordinary operating condi-
tions, one may assume complete thermodynamic equilibrium and com-
pute conditions in the test section on that basis. Alternatively one may
assume freezing of vibrational degrees of freedom throughout the tunnel
system and also compute test section conditions. Comparison of these
latter calculations with results based on an equilibrium process should
furnish some feeling for the possible uncertainty in flow parameters.
The following is an example of these calculations for typical (equilibrium)
reservoir conditions of 3020°K and 17. 79 psia in nitrogen. Basis of the
comparison is po'/po = constant in all flows..

Equilibrium Vibration
Flow Frozen Throughout Frozen at Throat

M, = 9.4 10.5 10. 4

U,. fps = 8690 . 8270 7880

Py, Mmicrons Hg = 19.8 15.4 15.4

Te, °K = 190 143 128

bo, atm = 3.9 x 1075 3.86 x 1079 4.25 x 1070
Qe Ppsf = 3.50 3.31 3. 20

Re, per in. = 240 294 356

Evidence of vibrational non-equilibrium will be difficult to find because

of the small differences in the quantities expected to exert the greater in-
fluence on measured data. In this example, it is interesting to note that
the Reynolds number of consequence in tests of blunt bodies, Reg, is

about equal for equilibrium flow or either case of frozen flow. Another
point of possible importance is the influence of contaminants on vibrational
relaxation. There would seem to be a possibility that even extremely
small amounts of foreign substances in the stream could significantly alter
the conclusions one would draw from analyses based on reaction rates de-
rived from tests with entirely "clean' fluids. Arc-heated hypervelocity
tunnels, at best, produce slightly contaminated streams. Where necessary
in the remainder of this discussion, a distinction between equilibrium and
and frozen flows will be made. Unless stated otherwise, any flow param-
eters used later will be based on thermal equilibrium.
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L
A photograph of a blunt model, similar to a Mercury capsule, installed
in the LDH Tunnel is shown in Fig. 17. Flow visualization has been
achieved by creating an electric field around the model through the mech-
anism of a difference in potential maintained by a Tesla coil.

The high temperatures encountered in this tunnel make it necessary
to determine total enthalpy partially by indirect meansg. There is the pos-
sibility of energy losses between settling chamber and test section caused
by viscous shear and heat transfer. This, as well as the question of
thermodynamic equilibrium mentioned earlier, makes it particularly
desirable to collect as many independent calibration data as possible.
The most valuable data are those giving test-section conditions directly.
In fact, if techniques for doing'this were developed to a reliable state,
the calibration of all types of high enthalpy tunnels would be far less depen-
dent on assumptions and theoretical estimates. ’

It should be recognized that most of the flow-probing procedures
commonly used in higher-density, lower-speed flows are not directly or
easily applicable in low-density, hypervelocity streams. In this class
fall static-pressure probes, total-temperature probes and shock angle or
Mach line photography. Therefore, much time has been devoted to con-
ducting and evaluating results from various calibration experiments
designed to circimvent or at least account for viscous and thermal effects.
Results of this work, in some cases preliminary in nature, are described
in the following sections.

IMPACT-PRESSURE PROBES

The impact-pressure or pitot probe deserves its place at the top of
this list because of its simplicity, the usually straight-forward interpre-
tation of its readings, and most certainly because of its widespread use.
Indeed, calculated flow parameters based on an impact pressure and
assumed equilibrium or frozen isentropic expansion from partly meas-
ured and partly computed reservoir conditions often are considered 'suf-
ficient tunnel calibration. First surveys of the LDH Tunnel nozzle were
made by impact-pressure probes, but the verification of those results
by independent measurements has been a goal.

After the time-consuming preparatory work directed toward simul-
taneous improvement of the tunnel and instrumentation as well as pre-
liminary definition of flow conditions, a series of experiments was begun
to establish the accuracy of the impact-pressure data. Two fundamental
problems requiring attention were possible error caused by large thermal
gradient along the probe and possible error from viscous effect at the
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probe mouth. The first of these is discussed by Dushman (Ref. 27),
Kennard (Ref. 28), and others. Howard (Ref. 29) has published useful
experimental data. The second has been the subject of several investi-
gations, partlcularly at the Umve‘ sities of California and Toronto; see
Sherman (Ref 30), Chambre and Schaaf (Ref. 31), and Enkenhus (Ref. 32).

The error caused by temperature gradient also is a function of pres-
sure level or Knudsen number. This has been established by experiments
and is in agreement with the data of Ref. 29. Calibration surveys of the
LDH Tunnel nozzle customarily are made with a water-cooled probe
having an outside diameter of 0. 25 in. and a bore diameter of 0.095 in.
This standard probe, under the prevailing conditions, is not appreciably
affected by thermal gradient. The thermal gradient correction could be
appreciable for smaller impact probes or static-pressure probes and
it will be the subject of future research.

Shape of the head of the probe is a factor in determining the viscous
effect, and because it was considered more convenient to use flat-faced
probes in the LDH Tunnel, an investigation was conducted to establish
the Reynolds number at which such influence is manifest. A summary
of the earlier results is included In Fig. 18, where some data from other
sources also are compared, It will be noted that the measurements
involving the flat=faced or chamfered probes become affected at about
equal Reynolds numbers, although the LDH Tunnel results correspond
to a markedly higher Mach number and a moderately cooled wall condi-
tion of TW/To 1/4, compared to the other data for which T = T,. The

ratio, 'I‘W/'I‘o 1/4, could have been reduced by more elaborate cooling,
but that was not thought to be necessary in this case. The correction of
the LDH experimental data to account for the temperature gradient along
the probe does not produce a significant change in the results, except at
the lower Reynolds numbers. Thus, it is seen that little more than two-
percent variation in impact pressure occurred even when (UD/v ), of the
moderately cooled, flat-faced probes with da/D > 0.7 was reduced to 20.
Data on the influence of other variables is being collected.

STATIC-PRESSURE PROBES

Measurement of free-stream static pressure in the LDH Tunnel is
difficult because the very thick boundary layer on a conventional probe
creates a spuriously high pressure at orifices located any practical dis-
tance from the stagnation point. Static pressure may be found by means
of nozzle wall orifices, but there would be much doubt regarding radial
pressure gradients associated with nozzles having large rates of increase
of cross-sectional area and very thick boundary layers. Therefore, some
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exploratory measurements have been made using a family of probes
having conical noses and cylindrical afterbodies with orifice locations
at varying distances downstream of the stagnation points. In q‘oing this
it was hoped that the pressure in the free stream could be found by ex-
trapolating the pressure distribution along the probe to the limit of
infinite length. Because of the perils of extrapolation processes, as
well as other sources of possible error, the result is not regarded as
infallible. On the other hand, free-stream static pressure is a useful
supplement to other measurements which, taken all together, lead to
sure definition of the flow conditions.

Since there is a thick boundary layer on the probes, it is assumed
that the pressure distribution is determined largely by the displacement
thickness. Where the growth of the displacement thickness is rapid, as
it is at the orifice locations, pressure will be approximately proportional
to the reciprocal of distance from the stagnation point x. as x—w, the
rate of change of p with 1/x will decrease. Therefore, we have chosen to
plot static pressure against a parameter which contains x in the denomi-
nator so that the resulting curve should be linear throughout the region
where most of the data points appear.

There is an axial Mach number gradient of 0. 14 per inch for a typical
case in the original, conical nozzle which has remained in use to the
present time. Because their small size made it practical to measure
pressure at only one distance from the tip on each probe, the probe tips
were located at different axial stations in the nozzle while data were
taken at a fixed nozzle station. In other words, a number of probes were
used to get the pressure distribution, rather than a single probe with
many orifices. Therefore, the Mach number and the pressure distribu-
tions on the forward portions of the probes varied slightly from probe to
probe. Assuming pressures all along a probe were determined entirely
by Mach number and pressure at the probe stagnation point, it is esti-
mated that the axial gradient in the nozzle would cause static pressures
measured with the minimum value of 1/x to be approximately 1.3 micronHg
high in relation to the pressure measured with the largest value of 1/x.
However, because this estimate did not include consideration of the effect
of the nozzle free-stream gradient on boundary-layer growth, it probably
is safe to conclude that the net effect amounted to less than one micron Hg.
Because differences of that magnitude could be concealed in the experi-
mental error, no correction is applied to the measured data. It is
intended that additional study of static-pressure measurements will be
taken up when the new, contoured nozzle is installed. Then, it is hoped,
the axial gradient will not exist.

Another, even more important factor affecting the results is the
correction to each probe reading necessitated by the high Knudsen numbers

26




AEDC-TN-61-83

in the probes and the temperature gradients along the probes. Whereas
this was not significant in the impact-pressure measurements, the cor-
rection is responsible for 20 to 40 percent increases to the measured
static pressures. In this case, the data of Howard (Ref. 29) have been
used. Additional research on the effect of temperature gradient on meas-
urement of very low pressures is being conducted.

Figure 19 shows three pressure distributions determined by the
described method. A detailed discussion of these data is not justified
before the axial-pressure gradient in the nozzle is eliminated and the
effect of thermal gradient along the probe is determined more exactly.
However, the results appear reasonably promising. The two upper
curves presumably should coincide; and since they do not, inexact com-
pensation for thermal gradient, nozzle pressure gradient, or differences
in orifice geometry may be the underlying cause. When the data are ex-
trapolated as shown, the end points fall between the equilibrium and wholly
frozen flow pressures based on impact-pressure readings and assumed
isentropic expansion from the settling chamber-- i. e., po'/po. These are
denoted by the thicker black bars on the ordinate; the tops of-the bars
represent thermal equilibrium, and the bottoms represent frozen vibra-
tional modes throughout the system. Inasmuch as it is expected that the
extrapolations should tend to level off as 1/x—0, the true statlc pressures
in both cases appear to be close to the equilibrium wvalues. Unfortunately,
the corrections for thermal gradient are so large that the data cannot be
relied on to the degree.necessary to prove or disprove thermal equilib-
rium. Even so, these results are valuable since the agreement with
static pressure's inferred from impact pressures points to the existence
of isentropic flow in the nozzle. Another point possibly deserving notice
is the decrease in pressures on the smaller probe at the smaller values
of x (0. 25 in.). Conceivably this could represent slip flow because

(M/\I Rey >. = 1.2 at this station.

Lateral traversing of a probe has shown constant static pressure
across the core of uniforn: flow at the exit of the LDH Tunnel. When a
tubular extension of 5. 84 in. inside diameter is connected to the nozzle
exit so that the conical nozzle is followed by about 12 in. of constant area
duct, the higher tank pressure does not influence the boundary layer so
strongly at the exit of the conical nozzle. Then, an investigation with
To = 3020°K shows that static pressure computed from centerline impact-
pressure ratio, po'/po, and based on thermal equilibrium closely agrees
with static pressure taken from an orifice in the wall of the nozzle at the
corresponding axial station.
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MASS-FLOW PROBE

As part of the extended calibration program demanded by the low-
density, hypervelocity character of the nozzle flow, a masseflow probe
was tested. The idea certainly is not new, but successful application
seems to be rare. There are several points at which failure may occur
in attempting to measure local mass-rate-of-flow, but the possibility of

deriving valuable data from the experiment encouraged the present effort.

Obviously, if the product (pU), can be measured by a’ mass-flow probe,
this can be compared to the value computed on the basis of impact~
pressure measurements, and agreement would constitute strong proof

of the accuracy of all other calibration data based on isentropic nozzle
flow. Also, when hypersonic flow impact pressure p(; = (pUz)., one may
obtain approximate p_ and U, directly from impact and mass-flow probe
measurements.

A schematic diagram of the equipment used is shown in Fig. 20,
and the sequence of operation follows: ’

1. The probe tip is positioned at the point whére the local
quantity (pU), is to be measured. )

2. Ideally, with valves 1, 3, and 6 open, the flow in a stream '
tube equal in area to the probe opening is swallowed into the
probe. (Valves 2, 4, and 5 initially are closed.)

3. Valves 4 and 5 are manipulated to positibn the oil levels at
A--A' and then left closed.

4. Needle valve 6 is adjusted so that the pressure above the oil
level at A is increased to a conveniently measurable value
but is still low enough to ensure that the flow ahead of the
probe tip is swallowed.

5. The pressure at the micromanometer and the oil height in
the sight glass are noted.

6. Valve 3 is closed simultaneously with the opening of valve 4,
and the time is noted. The oil level then begins to drop,
providing space for the mass flow from the probe.

7. Valve 4 is closed so that the oil level will stabilize at levels -
B--B'. The pressure above the 0il is now less than the initial
pressure because of the increased volume. The pressure is
increasing because of the incoming flow.

8. When the pressure indicated on the micromanometer is the
same as that noted in step 5, valve 1 is closed, valve 2
opened, and the time again noted.
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9, The mass-flow through the probe is given by the equation
my, = py AV/At
If, m, = (pU), Ap, (1

then (pU),, = pv AV/{ApAL) (2)

1

Also feasible is a second approach wherein the 0il is omitted and the
tank merely allowed to rise from a very low initial pressure to some
limiting higher pressure as mass is passed into it. Of course, it must
be determined that mass-flow-rate is not variable with pressure during
this process.

The most crucial factor in this experimental procedure is the swal-
lowing of the shock wave at the probe inlet. 1If the shock is not swallowed,
effective inlet area is not equal to geometric area, and the measurement
is useless unless some form of calibration can be devised., Using the
type of equipment described herein, one could plot local mass-flow rate
as a function of p, and find a value of p below which m) becomes con-
stant. In practice, however, the combination of limited tank size and
narrow ugeable range of py's prevented full application of this checking
technique, The system is being improved so that more thorough investi-
gatlons can be made. Investigation by varying py indicates that the shock
was nearly, but not completely, swallowed when the probe inlet was near
the nozzle exit. Complete swallowing is believed to have been accom-
plished upstream of X = -3 for T, = 3020°K and upstream of X = -5 for
To = 2220°K. Results of the first measurements are presented in Fig. 21,

MEASUREMENTS OF DRAG OF SPHERES

In earlier days, sphere-drag was used as a wind tunnel calibration
test for determining stream turbulence. Sphere drag measurements
have also gained an established place in low-densiiy wind-tunnel work.
In this connection, such data gerve to extend knowledge of aerodynamic
drag and also to aid in tunnel calibration by enabling comparison of data
taken from various tunnels. A limited series of measurements has been
completed using the LDH Tunnel.

A water-cooled, axial-force balance permitting measurement of
loads in the range from 0,002 to 0.015 lb was used. This balance was
built for another purpose and was used for the measurement of sphere
drag because of its availability. As a result, the range of measurements
was limited, but none the less useful. The spheres were of solid steel
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‘and were maintained at surface temperatures A approximately equal
to 0. 3 total temperature Tg. Mach number was 9.4, and unit Reynolds
number was 240 per inch.

To compare data from various sources, a means of approximate
correlation was attempted. If drag coefficients are plotted against a
form of Reynolds number, such as Reg, data obtained from tests in
hypervelocity streams with Ty, << Ty will not agree with data from tests
where Ty = To and M_ < 5 because both the drag coefficients Cpc at high
Reynolds numbers and the free-molecular {low drag coefficients Cprm
will be different. This obstacle to the comparison of data is largely
eliminated by using the quantity (Cp - Cpe)/(Cpfm - Cp) 28 the depen-
dent variable. When presented in this form, variations in Cp caused by
differences in Mach numbers, temperatures. and heat transfer tend to
vanish. The data of Hodges (Retf. 33) may be used to obtain Cp.. As a
convenience, the faired data curve from Ref. 33 is reproduced here in
Fig. 22. The free-molecular drag coefficients for spheres, assuming
completely diffuse reflection of incident molecules is given in Ref. 34
as

.

2

e 7 ¢ Seay  4st+ 48 -1 2T
Chim 5 - {1 + 287) == . erf (S) + At (3)
STy m : 25 3S,
where
S = I'oo"' Y, 2ﬁ7;r{n (4)
Swe= U_/\2IRT, - (5)

Following this procedure, Fig. 23 hes been prepared. In this case

Re, = (U/w), D’ ' (6)

and all quantities pertaining to the LDH Tunnel are based on flow in
thermodynamic equilibrium. Inspection of the result leads to the con=-
clusion that data from the LDH Tunnel are consistent with other pub=-
lished measurements, This tends to substantiate the nozzle calibration
based on surveys with probes discussed previously.
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| 10 i P, = 13.5 psia
o Impact Pressure, p ;
ot Sivel m = 3.17 Ib/hr
ei 0
o Heat Flux, "Relative” T 0" 2220%K
py= 701 Hg

YD
|

AN
|

i
X =-3.8in, 'r -2.81in. -1.8in. -0.3 in.
-0 0 i -0 0 10 <10 0 10 .10 0 10 -0 0 10

Percentages of ¢.Values of Impact Pressure and Heat Flux

Fig. 9 Typical Results of Transverse Surveys at Various Axial Stations in the
L.DH Tunne:! Conical Nozzle (Total Angle = 30 deg)

P MM Hg P, psia TDOK m Ib/hr

B a 920 17.79 3020 3.60
o 698 13.50 2220 3.17

R & 920 1779 1940 3.60,
(= :
- Dl:t 0w Hy
2
5 |
g 20f
&
5 .
= Nozzle Exit — Flow —
1.0 | | | ]
-4 -2 0 2 i

Axial Station, X, in.

Fig. 10 Axial Centerline Impact-Pressure Distributions
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P, - 920 mm Hg (17.79 psia)
To = 3030°K (5430°R)
Nozzles filled with boundary
| layer when X 1.5in. at ' _
these conditions. :P
i
|
[
!
|

Hg
-2

3.0 |

.

. Py, MM

Impact Pressure

® Orig. nozzle terminating at X = 0,
30-deg incl angle, conical

A Qrig. nozzle with tubular extension
fromX =0to X = +12.01in.

O Orig. nozzle for X <-5.83 in., with
more expanded, contoured extension
from X = -5.80t0 X = +4.50 in,

Nozzle Axial

Fig. 11 Centerline Impact Pressures with

10 12
Station, X in.

Extensions Added to the Original Nozzle

~10in. Pipe
75" ' 7.5¢
L__ 1 — i _I—-_
1 T r—— = e f
g [
- -* g0 { My { 0 =1
e R B
- — I'.:' - |_| -
Rimensions in inches and degrees
Diffuser I L l - Dy Notes

| SRS Ll = + S O = “SLE— _ — —— —
1A 15 24 4.8
1B 15 ‘ 13.25 | 4.8
IC | 15 8.25 | 4.8
2A 14 23.5 5.2
28 14 14 5.2

| 2C 14 6 5.2
3A 13 23.3 5.6
3B 13 13.3 5.6
3C 13 5 5.6
4A 10.5 0 6 Convergent section only
48 10.5 6 6 Convergent and throat sections
4c 0 6 6 Throat section only
4D 10.5 {--5.5 & —+Complete-diffuser ——+  —
5A 9 5.875 | 6.375

Fig. 12 Diffuser
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Fig. 13 Diffuser Performance with Clear Jet
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Fig. 14 Diffuser Component Contributions with Clear Jet
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Maximum Rise in Py HHg

Tank Pressure, pt, U Hg

0
100 To = 3020
Mg = 9.7 at X =0
80t Rem= 220 per in. at X =0
Model Frontal Area
60 : =0.08
Nozzle Expansion Area
40 |-
201
0 ] | | ] J
4.0 5.0 6.0 _ ;
Diffuser Throat Diam., in. i
Note: Nozzle expansion area = Cross-sectional area at exit minus area of
displacement boundary layer at exit. Model was circular cylinder
normal to flow, and frontal area is taken as that portion not covered
by the nozzle displacement boundary layer.
Fig. 15 Effect of Blockage on Tank Pressure, p,
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100 + :
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3
X, in.
O 1 1 | 1 1 | i 1 i
-4 -2 0 2 4

Shock Position on ¢

Fig. 16 Effect of Tank Pressure on Shock Position
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Fig. 17 Flow Visualization Produced by Artificially Created
Electric Field, M_ = 9.7, U_ = 8700 fps,
Equivalent Altitude = 50 miles
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x1.7-3.4 ~—-— Shermdn (30) Source shaped, da/D = 0.10 = l
(These data shown to illustrate effect of I a0 A
nose shape.) E I
9.7 ®  LDHTunnel  Flat-faced, da/0 = 0.70 ] = |
Note: Enkenhus' results for internally chamfered probe agreed ? Iy :
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Fig. 18 Viscosity Effect on Readings of Impact-Pressure Probes at Low Reynoids Numbers
and Supersonic Speeds
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Fig. 19 Approximate Determination of Static Pressure (Data have been corrected
for temperature gradient along the probe following Ref. 29.)
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3
5
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S p. =17.79 psia
- 0
S
é 8 P Based on po/p0
4+
o—o—
O | ! : i ' i
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Nozzle Axial Station, X, in.

Fig. 21 Measurements with a Mass-Flow Probe (Points represent
local values on nozzle Ci.)
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Fig. 22 Drag of Spheres at High Reynolds and Mach Numbers
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Fig. 23 Comparison of Drag Coefficients of Spheres Measured in
Low-Density Wind Tunnels
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